Skip to main content
Log in

Investigation of Elastic Modulus Degradation and Recovery with Time and Baking Process for Deformed Automotive Steel Sheets

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study investigated the elastic recovery phenomenon with elapsed time and heat treatment after the plastic deformation of automotive steel sheets. A conventional uniaxial loading–unloading-loading test was modified to include the elapsed time and heat treatment conditions. The elastic behaviors of five automotive steel sheets, MART1500, TRIP1180, EDDQ, DP980, and BH340, were characterized after applying various pre-strains, specific elapsed time conditions, and heat treatments. The elastic behaviors were quantitatively analyzed using the conventional chord modulus definition and a new elastic modulus definition representing the initial elastic characteristics. It was observed that the elastic behavior of BH steel was the most sensitive to elapsed time and heat treatment in terms of recovery owing to the bake-hardening effect. The elastic moduli of the MART1500 and TRIP1180 steel recovered somewhat after heat treatment, whereas no recoveries of EDDQ and DP980 steels were observed. Phenomenological modeling of the recovery process was also performed. The Yoshida–Uemori modulus model was applied to the experimental results for elastic degradation. This model was then extended to consider the elapsed time and heat treatment, and the elastic recovery behaviors of the different steels were captured successfully.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.-S. Kim, Y.-S. Lee, S.-M. Yang, H.Y. Kang, Int. J. Precis. Eng. Manuf. Green Technol. 3, 75–79 (2016)

    Article  Google Scholar 

  2. J.-Y. Lee, M.-G. Lee, F. Barlat, K.-H. Chung, D.-J. Kim, Int. J. Solids Struct. 87, 254–266 (2016)

    Article  Google Scholar 

  3. R.M. Cleveland, A.K. Ghosh, Int. J. Plasticity 18, 769–785 (2002)

    Article  CAS  Google Scholar 

  4. F. Yoshida, T. Uemori, K. Fujiwara, Int. J. Plasticity 18, 633–659 (2002)

    Article  CAS  Google Scholar 

  5. M. Yang, Y. Akiyama, T. Sasaki, J. Mater. Process. Tech. 151, 232–236 (2004)

    Article  Google Scholar 

  6. A. Govik, R. Rentmeester, L. Nilsson, Mater. Sci. Eng. A 602, 119–126 (2014)

    Article  CAS  Google Scholar 

  7. J. Mendiguren, F. Cortés, X. Gómez, L. Galdos, Mater. Sci. Eng. A 634, 147–152 (2015)

    Article  CAS  Google Scholar 

  8. H. Kim, C. Kim, F. Barlat, E. Pavlina, M.-G. Lee, Mater. Sci. Eng. A 562, 161–171 (2013)

    Article  CAS  Google Scholar 

  9. L. Luo, A.K. Ghosh, J. Eng. Mater. Technol. 125, 237–246 (2003)

    Article  CAS  Google Scholar 

  10. E.J. Pavlina, C. Lin, J. Mendiguren, B.F. Rolfe, M. Weiss, J. Mater. Eng. Perform. 24, 3737–3745 (2015)

    Article  CAS  Google Scholar 

  11. E.J. Pavlina, M.-G. Lee, F. Barlat, Metall. Mater. Trans. A. 46, 18–22 (2015)

    Article  CAS  Google Scholar 

  12. A. Torkabadi, E. Perdahcıoğlu, V. Meinders, A. van den Boogaard, Int. J. Solids Struct. 151, 2–8 (2018)

    Article  Google Scholar 

  13. L. Sun, R. Wagoner, Int. J. Plasticity 27, 1126–1144 (2011)

    Article  CAS  Google Scholar 

  14. P.-A. Eggertsen, K. Mattiasson, J. Hertzman, J. Manuf. Sci. Eng. 133, 061021 (2011)

  15. H.Y. Yu, Mater. Design 30, 846–850 (2009)

    Article  CAS  Google Scholar 

  16. S.F. Lajarin, C.P. Nikhare, P.V.P. Marcondes, J. Braz. Soc. Mech. Sci. Eng. 40, 87 (2018)

    Article  CAS  Google Scholar 

  17. S. Sumikawa, A. Ishiwatari, J. Hiramoto, J. Mater. Process. Tech. 241, 46–53 (2017)

    Article  Google Scholar 

  18. F. Yoshida, T. Amaishi, Int. J. Plasticity 130, 102708 (2020)

  19. A. Ghaei, D. Green, A. Aryanpour, Mater. Design 88, 461–470 (2015)

    Article  CAS  Google Scholar 

  20. P.-A. Eggertsen, K. Mattiasson, Int.J. Mater. Form. 3, 127–130 (2010)

    Article  Google Scholar 

  21. J. Mendiguren, J.J. Trujillo, F. Cortés, L. Galdos, Int. J. Mech. Sci. 77, 57–64 (2013)

    Article  Google Scholar 

  22. J. Lee, J.-Y. Lee, F. Barlat, R.H. Wagoner, K. Chung, M.-G. Lee, Int. J. Plasticity 45, 140–159 (2013)

    Article  CAS  Google Scholar 

  23. S.-L. Zang, M.-G. Lee, J.H. Kim, Int. J. Mech. Sci. 77, 194–204 (2013)

    Article  Google Scholar 

  24. S.-Y. Lee, S.-Y. Yoon, J.-H. Kim, F. Barlat, ISIJ Int. 60, 2927 (2020)

  25. J.-Y. Lee, M.-G. Lee, F. Barlat, G. Bae, Int. J. Plasticity 93, 112–136 (2017)

    Article  Google Scholar 

  26. J. Kim, H. Lee, K. Oh, D.-Y. Seok, S. Park, Y. Kang, D.-N. Kim, J. Mater. Process. Tech. 289, 116929 (2021)

    Article  CAS  Google Scholar 

  27. S. Sumikawa, A. Ishiwatari, J. Hiramoto, F. Yoshida, T. Clausmeyer, A.E. Tekkaya, Procedia Eng. 207, 179–184 (2017)

    Article  Google Scholar 

  28. X. Xue, J. Liao, G. Vincze, A.B. Pereira, F. Barlat, Int. J. Mech. Sci. 117, 1–15 (2016)

    Article  Google Scholar 

  29. S. Sumikawa, A. Ishiwatari, J. Hiramoto, T. Urabe, J. Mater. Process. Tech. 230, 1–7 (2016)

    Article  CAS  Google Scholar 

  30. N. Deng, Y.P. Korkolis, Int. J. Solids Struct. 141, 264–278 (2018)

    Article  Google Scholar 

  31. F. Morestin, M. Boivin, Nucl. Eng. Des. 162, 107–116 (1996)

    Article  CAS  Google Scholar 

  32. D.J. Pitchure, R.E. Ricker, J. Mater. Eng. Perform. 16, 349–353 (2007)

    Article  CAS  Google Scholar 

  33. M. Vrh, M. Halilovič, B. Štok, Exp. Mech. 51, 677–695 (2011)

    Article  CAS  Google Scholar 

  34. EN ISO 6892-1:2009, Metallic materials-Tensile Testing-Part 1: Method of Test at Room Temperature (International Organization for Standardization, Geneva, 2009)

  35. ASTM E111–97, Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus (ASTM International, West Conshohocken, PA, 1997)

  36. S. Suttner, M. Merklein, J. Mater. Process. Tech. 241, 64–72 (2017)

    Article  CAS  Google Scholar 

  37. B. Baudelet, Mise en Forme des Métaux Alliages (Editions du CNRS, Paris, 1976)

  38. J.A. Benito, J. Jorba, J.M. Manero, A. Roca, Metall. Mater. Trans. A 36, 3317–3324 (2005)

    Article  Google Scholar 

  39. A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. Sect. A 62, 49 (1949)

    Article  Google Scholar 

  40. M. Soliman, H. Palkowski, Mater. Sci. Eng. A 777, 139044 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the POSCO. Shin-Yeong Lee gratefully acknowledges Mr. Dong-Hyun Kim and Prof. Youn-Bae Kang at POSTECH for allowing the use of an air furnace.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shin-Yeong Lee or Frédéric Barlat.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SY., Park, HS., Kim, JH. et al. Investigation of Elastic Modulus Degradation and Recovery with Time and Baking Process for Deformed Automotive Steel Sheets. Met. Mater. Int. 29, 892–907 (2023). https://doi.org/10.1007/s12540-022-01268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01268-8

Keywords

Navigation