Skip to main content
Log in

Effect of Zn-Coating Process on Liquid Metal Embrittlement of TRIP Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The study investigated the microstructural evolution of the coating and liquid metal embrittlement (LME) sensitivity of the transformation induced plasticity (TRIP) steel sheets which were prepared by different coating processes: (i) continuous galvanizing, (ii) galvannealing, or (iii) electro-galvanizing. Hot tensile testing and microstructural analyses showed that the coating process influenced Fe-Zn reaction which controlled the contact between steel substrate and liquid Zn alloy at the high temperature. Because Fe-Zn reaction was the fastest in the electro-galvanized TRIP steel, it exhibited the highest resistance to LME, while the continuously galvanized steel resulted in the highest susceptibility to LME.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Bhattacharya, Mater. Sci. Technol. 34, 1809 (2018). https://doi.org/10.1080/02670836.2018.1461595

    Article  CAS  Google Scholar 

  2. A.R. Marder, Prog. Mat. Sci. 45, 191 (2000). https://doi.org/10.1016/S0079-6425(98)00006-1

    Article  CAS  Google Scholar 

  3. Y.G. Kim, I.J. Kim, J.S. Kim, Y.I. Chung, D.Y. Choi, Mater. Trans. 55, 171 (2014). https://doi.org/10.2320/matertrans.M2013244

    Article  CAS  Google Scholar 

  4. R. Ashiri, M.A. Haque, C.W. Ji, H.R. Salimijazi, Y.D. Park, Scr. Mater. 109, 6 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.006

    Article  CAS  Google Scholar 

  5. S.-H. Hong, J.-H. Kang, D. Kim, S.-J. Kim, Surf. Coat. Technol. 393, 125809 (2020). https://doi.org/10.1016/j.surfcoat.2020.125809

    Article  CAS  Google Scholar 

  6. O. Siar, Y. Benlatreche, T. Dupuy, S. Dancette, D. Fabregue, Metals 10, 1166 (2020). https://doi.org/10.3390/met10091166

    Article  CAS  Google Scholar 

  7. V. Kucera, Z. Zofkova, C. DiGiovanni, L. He, D. Vojtech, Metals 11, 1813 (2021). https://doi.org/10.3390/met11111813

    Article  CAS  Google Scholar 

  8. K. Kwon, G. Jang, W. Kim, S. Uhm, T. Lee, C.S. Lee, J. Mater. Res. Tech. 13, 2482 (2021). https://doi.org/10.1016/j.jmrt.2021.06.041

    Article  CAS  Google Scholar 

  9. C. Beal, X. Kleber, D. Fabregue, M. Bouzekri, Scr. Mater. 66, 1030 (2012). https://doi.org/10.1016/j.scriptamat.2011.12.040

    Article  CAS  Google Scholar 

  10. C.W. Lee, D.W. Fan, I.R. Sohn, S.-J. Lee, B.C. De Cooman, Metall. Mater. Trans. A 43, 5122 (2012). https://doi.org/10.1007/s11661-012-1316-0

    Article  CAS  Google Scholar 

  11. G.S. Jung, I.S. Woo, D.W. Suh, S.-J. Kim, Met. Mater. Int. 22, 187 (2016). https://doi.org/10.1007/s12540-016-5579-7

    Article  CAS  Google Scholar 

  12. H. Kang, L. Cho, C. Lee, B.C. De Cooman, Metall. Mater. Trans. A 47, 2885 (2016). https://doi.org/10.1007/s11661-016-3475-x

    Article  CAS  Google Scholar 

  13. D. Kim, J.-H. Kang, S.-J. Kim, Surf. Coat. Technol. 347, 157 (2018). https://doi.org/10.1016/j.surfcoat.2018.04.081

    Article  CAS  Google Scholar 

  14. C. Beal, X. Kleber, D. Fabregue, M. Bouzekri, Mater. Sci. Eng. A 543, 76 (2012). https://doi.org/10.1016/j.msea.2012.02.049

    Article  CAS  Google Scholar 

  15. C.H. Belin, R.C. Belin, J. Solid State Chem. 151, 85 (2000). https://doi.org/10.1006/jssc.2000.8626

    Article  CAS  Google Scholar 

  16. J. Brandon, R. Brizard, P. Chieh, R. Mcmillan, W. Pearson, Acta Crystallogr. B 30, 1412 (1974). https://doi.org/10.1107/S0567740874004997

    Article  Google Scholar 

  17. A. Johansson, H. Ljung, S. Westman, Acta Chem. Scand. 22, 2743 (1968). https://doi.org/10.3891/acta.chem.scand.22-2743

    Article  CAS  Google Scholar 

  18. A. Koster, J. Schoone, Acta Crystallogr. B 37, 1905 (1981). https://doi.org/10.1107/S056774088100753X

    Article  Google Scholar 

  19. R. Belin, M. Tillard, L. Monconduit, Acta Crystallogr. C 56, 267 (2000). https://doi.org/10.1107/S0108270199014997

    Article  Google Scholar 

  20. G.R. Speich, L. Zwell, H.A. Wriedt, Trans. Metall. AIME 230, 939 (1964)

    CAS  Google Scholar 

  21. M. Nicholas, C. Old, J. Mater. Sci. 14, 1 (1979). https://doi.org/10.1007/BF01028323

    Article  CAS  Google Scholar 

  22. V. Raghavan, J. Phase Equilibria 24, 544 (2003). https://doi.org/10.1361/105497103772084598

    Article  CAS  Google Scholar 

  23. G.F. Bastin, F.J.J. van Loo, G.D. Rieck, Z Metallkd 65, 656 (1974)

    CAS  Google Scholar 

Download references

Funding

The authors cordially appreciate POSCO (Pohang, South Korea) for the alloy production. This work is supported by the 2020 Yeungnam University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jee-Hyun Kang or Sung-Joon Kim.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Hong, SH., Kang, JH. et al. Effect of Zn-Coating Process on Liquid Metal Embrittlement of TRIP Steel. Met. Mater. Int. 29, 135–140 (2023). https://doi.org/10.1007/s12540-022-01214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01214-8

Keywords

Navigation