EMRL [EMRL] Prof. Kyu-Young Park: Mitigating Pt loss in polymer electrolyte membrane fuel cell cathode ca…
페이지 정보

작성자 최고관리자
댓글 0건 조회 19회 작성일 2026-01-12 15:33
본문
Carbon-supported Pt nanoparticles are the leading catalysts for the cathode oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells. However, these ORR catalysts suffer from poor electrochemical durability, particularly the loss of electrochemical surface area (ECSA) due to Pt nanoparticle dissolution and agglomeration. Here, Pt loss is mitigated through a Pickering emulsion-processing strategy that employs graphene nanoplatelet dispersions stabilized by the polymer ethyl cellulose. The resulting graphene-Pt/Vulcan carbon (Pt/C) catalysts exhibit superior durability and ECSA retention throughout an accelerated stress test compared with a commercial Pt/C standard catalyst, both in a diagnostic-rotating disc electrode setup and in a membrane electrode assembly full cell. These graphene-Pt/C catalysts also improve durability at high-voltage conditions, providing further evidence of their exceptional electrochemical stability. Consistent with density functional theory calculations, postelectrochemical characterization reveals that Pt nanoparticles localize at graphene defects both on the basal plane and especially at the edges of the graphene nanoplatelets. Since this Pt nanoparticle localization suppresses Pt nanoparticle dissolution and agglomeration without hindering accessibility of the reactant species to the catalyst surface, the ORR performance under both idealized and practical experimental conditions shows significantly improved durability while maintaining high electrochemical activity.
관련링크
- 이전글[EMRL] Prof. Kyu-Young Park: Enhanced LiMn2O4 Thin-Film Electrode Stability in Ionic Liquid Electrolyte: A Pathway to Suppress Mn Dissolution 26.01.12
- 다음글[EMRL] Prof. Kyu-Young Park: Characterizing and mitigating chemomechanical degradation in high-energy lithium-ion battery cathode materials 26.01.12
댓글목록
등록된 댓글이 없습니다.


